pwm working

new_hw
crinq 5 years ago
commit 2556a9bbce
  1. 211
      Drivers/CMSIS/DSP_Lib/Examples/arm_class_marks_example/ARM/arm_class_marks_example_f32.c
  2. 211
      Drivers/CMSIS/DSP_Lib/Examples/arm_class_marks_example/GCC/arm_class_marks_example_f32.c
  3. 247
      Drivers/CMSIS/DSP_Lib/Examples/arm_convolution_example/ARM/arm_convolution_example_f32.c
  4. 458
      Drivers/CMSIS/DSP_Lib/Examples/arm_convolution_example/ARM/math_helper.c
  5. 63
      Drivers/CMSIS/DSP_Lib/Examples/arm_convolution_example/ARM/math_helper.h
  6. 247
      Drivers/CMSIS/DSP_Lib/Examples/arm_convolution_example/GCC/arm_convolution_example_f32.c
  7. 458
      Drivers/CMSIS/DSP_Lib/Examples/arm_convolution_example/GCC/math_helper.c
  8. 63
      Drivers/CMSIS/DSP_Lib/Examples/arm_convolution_example/GCC/math_helper.h
  9. 178
      Drivers/CMSIS/DSP_Lib/Examples/arm_dotproduct_example/ARM/arm_dotproduct_example_f32.c
  10. 178
      Drivers/CMSIS/DSP_Lib/Examples/arm_dotproduct_example/GCC/arm_dotproduct_example_f32.c
  11. 308
      Drivers/CMSIS/DSP_Lib/Examples/arm_fft_bin_example/ARM/arm_fft_bin_data.c
  12. 158
      Drivers/CMSIS/DSP_Lib/Examples/arm_fft_bin_example/ARM/arm_fft_bin_example_f32.c
  13. 308
      Drivers/CMSIS/DSP_Lib/Examples/arm_fft_bin_example/GCC/arm_fft_bin_data.c
  14. 158
      Drivers/CMSIS/DSP_Lib/Examples/arm_fft_bin_example/GCC/arm_fft_bin_example_f32.c
  15. 134
      Drivers/CMSIS/DSP_Lib/Examples/arm_fir_example/ARM/arm_fir_data.c
  16. 233
      Drivers/CMSIS/DSP_Lib/Examples/arm_fir_example/ARM/arm_fir_example_f32.c
  17. 458
      Drivers/CMSIS/DSP_Lib/Examples/arm_fir_example/ARM/math_helper.c
  18. 63
      Drivers/CMSIS/DSP_Lib/Examples/arm_fir_example/ARM/math_helper.h
  19. 134
      Drivers/CMSIS/DSP_Lib/Examples/arm_graphic_equalizer_example/ARM/arm_graphic_equalizer_data.c
  20. 411
      Drivers/CMSIS/DSP_Lib/Examples/arm_graphic_equalizer_example/ARM/arm_graphic_equalizer_example_q31.c
  21. 458
      Drivers/CMSIS/DSP_Lib/Examples/arm_graphic_equalizer_example/ARM/math_helper.c
  22. 63
      Drivers/CMSIS/DSP_Lib/Examples/arm_graphic_equalizer_example/ARM/math_helper.h
  23. 23616
      Drivers/CMSIS/DSP_Lib/Examples/arm_linear_interp_example/ARM/arm_linear_interp_data.c
  24. 204
      Drivers/CMSIS/DSP_Lib/Examples/arm_linear_interp_example/ARM/arm_linear_interp_example_f32.c
  25. 458
      Drivers/CMSIS/DSP_Lib/Examples/arm_linear_interp_example/ARM/math_helper.c
  26. 63
      Drivers/CMSIS/DSP_Lib/Examples/arm_linear_interp_example/ARM/math_helper.h
  27. 233
      Drivers/CMSIS/DSP_Lib/Examples/arm_matrix_example/ARM/arm_matrix_example_f32.c
  28. 458
      Drivers/CMSIS/DSP_Lib/Examples/arm_matrix_example/ARM/math_helper.c
  29. 63
      Drivers/CMSIS/DSP_Lib/Examples/arm_matrix_example/ARM/math_helper.h
  30. 269
      Drivers/CMSIS/DSP_Lib/Examples/arm_signal_converge_example/ARM/arm_signal_converge_data.c
  31. 259
      Drivers/CMSIS/DSP_Lib/Examples/arm_signal_converge_example/ARM/arm_signal_converge_example_f32.c
  32. 458
      Drivers/CMSIS/DSP_Lib/Examples/arm_signal_converge_example/ARM/math_helper.c
  33. 63
      Drivers/CMSIS/DSP_Lib/Examples/arm_signal_converge_example/ARM/math_helper.h
  34. 161
      Drivers/CMSIS/DSP_Lib/Examples/arm_sin_cos_example/ARM/arm_sin_cos_example_f32.c
  35. 204
      Drivers/CMSIS/DSP_Lib/Examples/arm_variance_example/ARM/arm_variance_example_f32.c
  36. 165
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_abs_f32.c
  37. 179
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_abs_q15.c
  38. 130
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_abs_q31.c
  39. 157
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_abs_q7.c
  40. 150
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_add_f32.c
  41. 140
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_add_q15.c
  42. 148
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_add_q31.c
  43. 134
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_add_q7.c
  44. 135
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_dot_prod_f32.c
  45. 140
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_dot_prod_q15.c
  46. 143
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_dot_prod_q31.c
  47. 159
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_dot_prod_q7.c
  48. 174
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_mult_f32.c
  49. 154
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_mult_q15.c
  50. 160
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_mult_q31.c
  51. 127
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_mult_q7.c
  52. 146
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_negate_f32.c
  53. 142
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_negate_q15.c
  54. 129
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_negate_q31.c
  55. 125
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_negate_q7.c
  56. 165
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_offset_f32.c
  57. 136
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_offset_q15.c
  58. 140
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_offset_q31.c
  59. 135
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_offset_q7.c
  60. 169
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_scale_f32.c
  61. 162
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_scale_q15.c
  62. 239
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_scale_q31.c
  63. 149
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_scale_q7.c
  64. 248
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_shift_q15.c
  65. 203
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_shift_q31.c
  66. 220
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_shift_q7.c
  67. 150
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_sub_f32.c
  68. 140
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_sub_q15.c
  69. 146
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_sub_q31.c
  70. 131
      Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_sub_q7.c
  71. 27251
      Drivers/CMSIS/DSP_Lib/Source/CommonTables/arm_common_tables.c
  72. 156
      Drivers/CMSIS/DSP_Lib/Source/CommonTables/arm_const_structs.c
  73. 182
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_conj_f32.c
  74. 161
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_conj_q15.c
  75. 180
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_conj_q31.c
  76. 203
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_dot_prod_f32.c
  77. 189
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_dot_prod_q15.c
  78. 187
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_dot_prod_q31.c
  79. 165
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c
  80. 153
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mag_q15.c
  81. 185
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mag_q31.c
  82. 215
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mag_squared_f32.c
  83. 148
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mag_squared_q15.c
  84. 161
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mag_squared_q31.c
  85. 207
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mult_cmplx_f32.c
  86. 193
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mult_cmplx_q15.c
  87. 326
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mult_cmplx_q31.c
  88. 225
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mult_real_f32.c
  89. 203
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mult_real_q15.c
  90. 223
      Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mult_real_q31.c
  91. 87
      Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_pid_init_f32.c
  92. 122
      Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_pid_init_q15.c
  93. 107
      Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_pid_init_q31.c
  94. 65
      Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_pid_reset_f32.c
  95. 64
      Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_pid_reset_q15.c
  96. 65
      Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_pid_reset_q31.c
  97. 149
      Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_sin_cos_f32.c
  98. 122
      Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_sin_cos_q31.c
  99. 127
      Drivers/CMSIS/DSP_Lib/Source/FastMathFunctions/arm_cos_f32.c
  100. 96
      Drivers/CMSIS/DSP_Lib/Source/FastMathFunctions/arm_cos_q15.c
  101. Some files were not shown because too many files have changed in this diff Show More

@ -0,0 +1,211 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.0
*
* Project: CMSIS DSP Library
* Title: arm_class_marks_example_f32.c
*
* Description: Example code to calculate Minimum, Maximum
* Mean, std and variance of marks obtained in a class
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
/**
* @ingroup groupExamples
*/
/**
* @defgroup ClassMarks Class Marks Example
*
* \par Description:
* \par
* Demonstrates the use the Maximum, Minimum, Mean, Standard Deviation, Variance
* and Matrix functions to calculate statistical values of marks obtained in a class.
*
* \note This example also demonstrates the usage of static initialization.
*
* \par Variables Description:
* \par
* \li \c testMarks_f32 points to the marks scored by 20 students in 4 subjects
* \li \c max_marks Maximum of all marks
* \li \c min_marks Minimum of all marks
* \li \c mean Mean of all marks
* \li \c var Variance of the marks
* \li \c std Standard deviation of the marks
* \li \c numStudents Total number of students in the class
*
* \par CMSIS DSP Software Library Functions Used:
* \par
* - arm_mat_init_f32()
* - arm_mat_mult_f32()
* - arm_max_f32()
* - arm_min_f32()
* - arm_mean_f32()
* - arm_std_f32()
* - arm_var_f32()
*
* <b> Refer </b>
* \link arm_class_marks_example_f32.c \endlink
*
*/
/** \example arm_class_marks_example_f32.c
*/
#include "arm_math.h"
#define USE_STATIC_INIT
/* ----------------------------------------------------------------------
** Global defines
** ------------------------------------------------------------------- */
#define TEST_LENGTH_SAMPLES (20*4)
/* ----------------------------------------------------------------------
** List of Marks scored by 20 students for 4 subjects
** ------------------------------------------------------------------- */
const float32_t testMarks_f32[TEST_LENGTH_SAMPLES] =
{
42.000000, 37.000000, 81.000000, 28.000000,
83.000000, 72.000000, 36.000000, 38.000000,
32.000000, 51.000000, 63.000000, 64.000000,
97.000000, 82.000000, 95.000000, 90.000000,
66.000000, 51.000000, 54.000000, 42.000000,
67.000000, 56.000000, 45.000000, 57.000000,
67.000000, 69.000000, 35.000000, 52.000000,
29.000000, 81.000000, 58.000000, 47.000000,
38.000000, 76.000000, 100.000000, 29.000000,
33.000000, 47.000000, 29.000000, 50.000000,
34.000000, 41.000000, 61.000000, 46.000000,
52.000000, 50.000000, 48.000000, 36.000000,
47.000000, 55.000000, 44.000000, 40.000000,
100.000000, 94.000000, 84.000000, 37.000000,
32.000000, 71.000000, 47.000000, 77.000000,
31.000000, 50.000000, 49.000000, 35.000000,
63.000000, 67.000000, 40.000000, 31.000000,
29.000000, 68.000000, 61.000000, 38.000000,
31.000000, 28.000000, 28.000000, 76.000000,
55.000000, 33.000000, 29.000000, 39.000000
};
/* ----------------------------------------------------------------------
* Number of subjects X 1
* ------------------------------------------------------------------- */
const float32_t testUnity_f32[4] =
{
1.000, 1.000, 1.000, 1.000
};
/* ----------------------------------------------------------------------
** f32 Output buffer
** ------------------------------------------------------------------- */
static float32_t testOutput[TEST_LENGTH_SAMPLES];
/* ------------------------------------------------------------------
* Global defines
*------------------------------------------------------------------- */
#define NUMSTUDENTS 20
#define NUMSUBJECTS 4
/* ------------------------------------------------------------------
* Global variables
*------------------------------------------------------------------- */
uint32_t numStudents = 20;
uint32_t numSubjects = 4;
float32_t max_marks, min_marks, mean, std, var;
uint32_t student_num;
/* ----------------------------------------------------------------------------------
* Main f32 test function. It returns maximum marks secured and student number
* ------------------------------------------------------------------------------- */
int32_t main()
{
#ifndef USE_STATIC_INIT
arm_matrix_instance_f32 srcA;
arm_matrix_instance_f32 srcB;
arm_matrix_instance_f32 dstC;
/* Input and output matrices initializations */
arm_mat_init_f32(&srcA, numStudents, numSubjects, (float32_t *)testMarks_f32);
arm_mat_init_f32(&srcB, numSubjects, 1, (float32_t *)testUnity_f32);
arm_mat_init_f32(&dstC, numStudents, 1, testOutput);
#else
/* Static Initializations of Input and output matrix sizes and array */
arm_matrix_instance_f32 srcA = {NUMSTUDENTS, NUMSUBJECTS, (float32_t *)testMarks_f32};
arm_matrix_instance_f32 srcB = {NUMSUBJECTS, 1, (float32_t *)testUnity_f32};
arm_matrix_instance_f32 dstC = {NUMSTUDENTS, 1, testOutput};
#endif
/* ----------------------------------------------------------------------
*Call the Matrix multiplication process function
* ------------------------------------------------------------------- */
arm_mat_mult_f32(&srcA, &srcB, &dstC);
/* ----------------------------------------------------------------------
** Call the Max function to calculate max marks among numStudents
** ------------------------------------------------------------------- */
arm_max_f32(testOutput, numStudents, &max_marks, &student_num);
/* ----------------------------------------------------------------------
** Call the Min function to calculate min marks among numStudents
** ------------------------------------------------------------------- */
arm_min_f32(testOutput, numStudents, &min_marks, &student_num);
/* ----------------------------------------------------------------------
** Call the Mean function to calculate mean
** ------------------------------------------------------------------- */
arm_mean_f32(testOutput, numStudents, &mean);
/* ----------------------------------------------------------------------
** Call the std function to calculate standard deviation
** ------------------------------------------------------------------- */
arm_std_f32(testOutput, numStudents, &std);
/* ----------------------------------------------------------------------
** Call the var function to calculate variance
** ------------------------------------------------------------------- */
arm_var_f32(testOutput, numStudents, &var);
while(1); /* main function does not return */
}

@ -0,0 +1,211 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.0
*
* Project: CMSIS DSP Library
* Title: arm_class_marks_example_f32.c
*
* Description: Example code to calculate Minimum, Maximum
* Mean, std and variance of marks obtained in a class
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
/**
* @ingroup groupExamples
*/
/**
* @defgroup ClassMarks Class Marks Example
*
* \par Description:
* \par
* Demonstrates the use the Maximum, Minimum, Mean, Standard Deviation, Variance
* and Matrix functions to calculate statistical values of marks obtained in a class.
*
* \note This example also demonstrates the usage of static initialization.
*
* \par Variables Description:
* \par
* \li \c testMarks_f32 points to the marks scored by 20 students in 4 subjects
* \li \c max_marks Maximum of all marks
* \li \c min_marks Minimum of all marks
* \li \c mean Mean of all marks
* \li \c var Variance of the marks
* \li \c std Standard deviation of the marks
* \li \c numStudents Total number of students in the class
*
* \par CMSIS DSP Software Library Functions Used:
* \par
* - arm_mat_init_f32()
* - arm_mat_mult_f32()
* - arm_max_f32()
* - arm_min_f32()
* - arm_mean_f32()
* - arm_std_f32()
* - arm_var_f32()
*
* <b> Refer </b>
* \link arm_class_marks_example_f32.c \endlink
*
*/
/** \example arm_class_marks_example_f32.c
*/
#include "arm_math.h"
#define USE_STATIC_INIT
/* ----------------------------------------------------------------------
** Global defines
** ------------------------------------------------------------------- */
#define TEST_LENGTH_SAMPLES (20*4)
/* ----------------------------------------------------------------------
** List of Marks scored by 20 students for 4 subjects
** ------------------------------------------------------------------- */
const float32_t testMarks_f32[TEST_LENGTH_SAMPLES] =
{
42.000000, 37.000000, 81.000000, 28.000000,
83.000000, 72.000000, 36.000000, 38.000000,
32.000000, 51.000000, 63.000000, 64.000000,
97.000000, 82.000000, 95.000000, 90.000000,
66.000000, 51.000000, 54.000000, 42.000000,
67.000000, 56.000000, 45.000000, 57.000000,
67.000000, 69.000000, 35.000000, 52.000000,
29.000000, 81.000000, 58.000000, 47.000000,
38.000000, 76.000000, 100.000000, 29.000000,
33.000000, 47.000000, 29.000000, 50.000000,
34.000000, 41.000000, 61.000000, 46.000000,
52.000000, 50.000000, 48.000000, 36.000000,
47.000000, 55.000000, 44.000000, 40.000000,
100.000000, 94.000000, 84.000000, 37.000000,
32.000000, 71.000000, 47.000000, 77.000000,
31.000000, 50.000000, 49.000000, 35.000000,
63.000000, 67.000000, 40.000000, 31.000000,
29.000000, 68.000000, 61.000000, 38.000000,
31.000000, 28.000000, 28.000000, 76.000000,
55.000000, 33.000000, 29.000000, 39.000000
};
/* ----------------------------------------------------------------------
* Number of subjects X 1
* ------------------------------------------------------------------- */
const float32_t testUnity_f32[4] =
{
1.000, 1.000, 1.000, 1.000
};
/* ----------------------------------------------------------------------
** f32 Output buffer
** ------------------------------------------------------------------- */
static float32_t testOutput[TEST_LENGTH_SAMPLES];
/* ------------------------------------------------------------------
* Global defines
*------------------------------------------------------------------- */
#define NUMSTUDENTS 20
#define NUMSUBJECTS 4
/* ------------------------------------------------------------------
* Global variables
*------------------------------------------------------------------- */
uint32_t numStudents = 20;
uint32_t numSubjects = 4;
float32_t max_marks, min_marks, mean, std, var;
uint32_t student_num;
/* ----------------------------------------------------------------------------------
* Main f32 test function. It returns maximum marks secured and student number
* ------------------------------------------------------------------------------- */
int32_t main()
{
#ifndef USE_STATIC_INIT
arm_matrix_instance_f32 srcA;
arm_matrix_instance_f32 srcB;
arm_matrix_instance_f32 dstC;
/* Input and output matrices initializations */
arm_mat_init_f32(&srcA, numStudents, numSubjects, (float32_t *)testMarks_f32);
arm_mat_init_f32(&srcB, numSubjects, 1, (float32_t *)testUnity_f32);
arm_mat_init_f32(&dstC, numStudents, 1, testOutput);
#else
/* Static Initializations of Input and output matrix sizes and array */
arm_matrix_instance_f32 srcA = {NUMSTUDENTS, NUMSUBJECTS, (float32_t *)testMarks_f32};
arm_matrix_instance_f32 srcB = {NUMSUBJECTS, 1, (float32_t *)testUnity_f32};
arm_matrix_instance_f32 dstC = {NUMSTUDENTS, 1, testOutput};
#endif
/* ----------------------------------------------------------------------
*Call the Matrix multiplication process function
* ------------------------------------------------------------------- */
arm_mat_mult_f32(&srcA, &srcB, &dstC);
/* ----------------------------------------------------------------------
** Call the Max function to calculate max marks among numStudents
** ------------------------------------------------------------------- */
arm_max_f32(testOutput, numStudents, &max_marks, &student_num);
/* ----------------------------------------------------------------------
** Call the Min function to calculate min marks among numStudents
** ------------------------------------------------------------------- */
arm_min_f32(testOutput, numStudents, &min_marks, &student_num);
/* ----------------------------------------------------------------------
** Call the Mean function to calculate mean
** ------------------------------------------------------------------- */
arm_mean_f32(testOutput, numStudents, &mean);
/* ----------------------------------------------------------------------
** Call the std function to calculate standard deviation
** ------------------------------------------------------------------- */
arm_std_f32(testOutput, numStudents, &std);
/* ----------------------------------------------------------------------
** Call the var function to calculate variance
** ------------------------------------------------------------------- */
arm_var_f32(testOutput, numStudents, &var);
while(1); /* main function does not return */
}

@ -0,0 +1,247 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.0
*
* Project: CMSIS DSP Library
* Title: arm_convolution_example_f32.c
*
* Description: Example code demonstrating Convolution of two input signals using fft.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
/**
* @ingroup groupExamples
*/
/**
* @defgroup ConvolutionExample Convolution Example
*
* \par Description:
* \par
* Demonstrates the convolution theorem with the use of the Complex FFT, Complex-by-Complex
* Multiplication, and Support Functions.
*
* \par Algorithm:
* \par
* The convolution theorem states that convolution in the time domain corresponds to
* multiplication in the frequency domain. Therefore, the Fourier transform of the convoution of
* two signals is equal to the product of their individual Fourier transforms.
* The Fourier transform of a signal can be evaluated efficiently using the Fast Fourier Transform (FFT).
* \par
* Two input signals, <code>a[n]</code> and <code>b[n]</code>, with lengths \c n1 and \c n2 respectively,
* are zero padded so that their lengths become \c N, which is greater than or equal to <code>(n1+n2-1)</code>
* and is a power of 4 as FFT implementation is radix-4.
* The convolution of <code>a[n]</code> and <code>b[n]</code> is obtained by taking the FFT of the input
* signals, multiplying the Fourier transforms of the two signals, and taking the inverse FFT of
* the multiplied result.
* \par
* This is denoted by the following equations:
* <pre> A[k] = FFT(a[n],N)
* B[k] = FFT(b[n],N)
* conv(a[n], b[n]) = IFFT(A[k] * B[k], N)</pre>
* where <code>A[k]</code> and <code>B[k]</code> are the N-point FFTs of the signals <code>a[n]</code>
* and <code>b[n]</code> respectively.
* The length of the convolved signal is <code>(n1+n2-1)</code>.
*
* \par Block Diagram:
* \par
* \image html Convolution.gif
*
* \par Variables Description:
* \par
* \li \c testInputA_f32 points to the first input sequence
* \li \c srcALen length of the first input sequence
* \li \c testInputB_f32 points to the second input sequence
* \li \c srcBLen length of the second input sequence
* \li \c outLen length of convolution output sequence, <code>(srcALen + srcBLen - 1)</code>
* \li \c AxB points to the output array where the product of individual FFTs of inputs is stored.
*
* \par CMSIS DSP Software Library Functions Used:
* \par
* - arm_fill_f32()
* - arm_copy_f32()
* - arm_cfft_radix4_init_f32()
* - arm_cfft_radix4_f32()
* - arm_cmplx_mult_cmplx_f32()
*
* <b> Refer </b>
* \link arm_convolution_example_f32.c \endlink
*
*/
/** \example arm_convolution_example_f32.c
*/
#include "arm_math.h"
#include "math_helper.h"
/* ----------------------------------------------------------------------
* Defines each of the tests performed
* ------------------------------------------------------------------- */
#define MAX_BLOCKSIZE 128
#define DELTA (0.000001f)
#define SNR_THRESHOLD 90
/* ----------------------------------------------------------------------
* Declare I/O buffers
* ------------------------------------------------------------------- */
float32_t Ak[MAX_BLOCKSIZE]; /* Input A */
float32_t Bk[MAX_BLOCKSIZE]; /* Input B */
float32_t AxB[MAX_BLOCKSIZE * 2]; /* Output */
/* ----------------------------------------------------------------------
* Test input data for Floating point Convolution example for 32-blockSize
* Generated by the MATLAB randn() function
* ------------------------------------------------------------------- */
float32_t testInputA_f32[64] =
{
-0.808920, 1.357369, 1.180861, -0.504544, 1.762637, -0.703285,
1.696966, 0.620571, -0.151093, -0.100235, -0.872382, -0.403579,
-0.860749, -0.382648, -1.052338, 0.128113, -0.646269, 1.093377,
-2.209198, 0.471706, 0.408901, 1.266242, 0.598252, 1.176827,
-0.203421, 0.213596, -0.851964, -0.466958, 0.021841, -0.698938,
-0.604107, 0.461778, -0.318219, 0.942520, 0.577585, 0.417619,
0.614665, 0.563679, -1.295073, -0.764437, 0.952194, -0.859222,
-0.618554, -2.268542, -1.210592, 1.655853, -2.627219, -0.994249,
-1.374704, 0.343799, 0.025619, 1.227481, -0.708031, 0.069355,
-1.845228, -1.570886, 1.010668, -1.802084, 1.630088, 1.286090,
-0.161050, -0.940794, 0.367961, 0.291907
};
float32_t testInputB_f32[64] =
{
0.933724, 0.046881, 1.316470, 0.438345, 0.332682, 2.094885,
0.512081, 0.035546, 0.050894, -2.320371, 0.168711, -1.830493,
-0.444834, -1.003242, -0.531494, -1.365600, -0.155420, -0.757692,
-0.431880, -0.380021, 0.096243, -0.695835, 0.558850, -1.648962,
0.020369, -0.363630, 0.887146, 0.845503, -0.252864, -0.330397,
1.269131, -1.109295, -1.027876, 0.135940, 0.116721, -0.293399,
-1.349799, 0.166078, -0.802201, 0.369367, -0.964568, -2.266011,
0.465178, 0.651222, -0.325426, 0.320245, -0.784178, -0.579456,
0.093374, 0.604778, -0.048225, 0.376297, -0.394412, 0.578182,
-1.218141, -1.387326, 0.692462, -0.631297, 0.153137, -0.638952,
0.635474, -0.970468, 1.334057, -0.111370
};
const float testRefOutput_f32[127] =
{
-0.818943, 1.229484, -0.533664, 1.016604, 0.341875, -1.963656,
5.171476, 3.478033, 7.616361, 6.648384, 0.479069, 1.792012,
-1.295591, -7.447818, 0.315830, -10.657445, -2.483469, -6.524236,
-7.380591, -3.739005, -8.388957, 0.184147, -1.554888, 3.786508,
-1.684421, 5.400610, -1.578126, 7.403361, 8.315999, 2.080267,
11.077776, 2.749673, 7.138962, 2.748762, 0.660363, 0.981552,
1.442275, 0.552721, -2.576892, 4.703989, 0.989156, 8.759344,
-0.564825, -3.994680, 0.954710, -5.014144, 6.592329, 1.599488,
-13.979146, -0.391891, -4.453369, -2.311242, -2.948764, 1.761415,
-0.138322, 10.433007, -2.309103, 4.297153, 8.535523, 3.209462,
8.695819, 5.569919, 2.514304, 5.582029, 2.060199, 0.642280,
7.024616, 1.686615, -6.481756, 1.343084, -3.526451, 1.099073,
-2.965764, -0.173723, -4.111484, 6.528384, -6.965658, 1.726291,
1.535172, 11.023435, 2.338401, -4.690188, 1.298210, 3.943885,
8.407885, 5.168365, 0.684131, 1.559181, 1.859998, 2.852417,
8.574070, -6.369078, 6.023458, 11.837963, -6.027632, 4.469678,
-6.799093, -2.674048, 6.250367, -6.809971, -3.459360, 9.112410,
-2.711621, -1.336678, 1.564249, -1.564297, -1.296760, 8.904013,
-3.230109, 6.878013, -7.819823, 3.369909, -1.657410, -2.007358,
-4.112825, 1.370685, -3.420525, -6.276605, 3.244873, -3.352638,
1.545372, 0.902211, 0.197489, -1.408732, 0.523390, 0.348440, 0
};
/* ----------------------------------------------------------------------
* Declare Global variables
* ------------------------------------------------------------------- */
uint32_t srcALen = 64; /* Length of Input A */
uint32_t srcBLen = 64; /* Length of Input B */
uint32_t outLen; /* Length of convolution output */
float32_t snr; /* output SNR */
int32_t main(void)
{
arm_status status; /* Status of the example */
arm_cfft_radix4_instance_f32 cfft_instance; /* CFFT Structure instance */
/* CFFT Structure instance pointer */
arm_cfft_radix4_instance_f32 *cfft_instance_ptr =
(arm_cfft_radix4_instance_f32*) &cfft_instance;
/* output length of convolution */
outLen = srcALen + srcBLen - 1;
/* Initialise the fft input buffers with all zeros */
arm_fill_f32(0.0, Ak, MAX_BLOCKSIZE);
arm_fill_f32(0.0, Bk, MAX_BLOCKSIZE);
/* Copy the input values to the fft input buffers */
arm_copy_f32(testInputA_f32, Ak, MAX_BLOCKSIZE/2);
arm_copy_f32(testInputB_f32, Bk, MAX_BLOCKSIZE/2);
/* Initialize the CFFT function to compute 64 point fft */
status = arm_cfft_radix4_init_f32(cfft_instance_ptr, 64, 0, 1);
/* Transform input a[n] from time domain to frequency domain A[k] */
arm_cfft_radix4_f32(cfft_instance_ptr, Ak);
/* Transform input b[n] from time domain to frequency domain B[k] */
arm_cfft_radix4_f32(cfft_instance_ptr, Bk);
/* Complex Multiplication of the two input buffers in frequency domain */
arm_cmplx_mult_cmplx_f32(Ak, Bk, AxB, MAX_BLOCKSIZE/2);
/* Initialize the CIFFT function to compute 64 point ifft */
status = arm_cfft_radix4_init_f32(cfft_instance_ptr, 64, 1, 1);
/* Transform the multiplication output from frequency domain to time domain,
that gives the convolved output */
arm_cfft_radix4_f32(cfft_instance_ptr, AxB);
/* SNR Calculation */
snr = arm_snr_f32((float32_t *)testRefOutput_f32, AxB, srcALen + srcBLen - 1);
/* Compare the SNR with threshold to test whether the
computed output is matched with the reference output values. */
if( snr > SNR_THRESHOLD)
{
status = ARM_MATH_SUCCESS;
}
if( status != ARM_MATH_SUCCESS)
{
while(1);
}
while(1); /* main function does not return */
}
/** \endlink */

@ -0,0 +1,458 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.0
*
* Project: CMSIS DSP Library
*
* Title: math_helper.c
*
* Description: Definition of all helper functions required.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
* Include standard header files
* -------------------------------------------------------------------- */
#include<math.h>
/* ----------------------------------------------------------------------
* Include project header files
* -------------------------------------------------------------------- */
#include "math_helper.h"
/**
* @brief Caluclation of SNR
* @param float* Pointer to the reference buffer
* @param float* Pointer to the test buffer
* @param uint32_t total number of samples
* @return float SNR
* The function Caluclates signal to noise ratio for the reference output
* and test output
*/
float arm_snr_f32(float *pRef, float *pTest, uint32_t buffSize)
{
float EnergySignal = 0.0, EnergyError = 0.0;
uint32_t i;
float SNR;
int temp;
int *test;
for (i = 0; i < buffSize; i++)
{
/* Checking for a NAN value in pRef array */
test = (int *)(&pRef[i]);
temp = *test;
if(temp == 0x7FC00000)
{
return(0);
}
/* Checking for a NAN value in pTest array */
test = (int *)(&pTest[i]);
temp = *test;
if(temp == 0x7FC00000)
{
return(0);
}
EnergySignal += pRef[i] * pRef[i];
EnergyError += (pRef[i] - pTest[i]) * (pRef[i] - pTest[i]);
}
/* Checking for a NAN value in EnergyError */
test = (int *)(&EnergyError);
temp = *test;
if(temp == 0x7FC00000)
{
return(0);
}
SNR = 10 * log10 (EnergySignal / EnergyError);
return (SNR);
}
/**
* @brief Provide guard bits for Input buffer
* @param q15_t* Pointer to input buffer
* @param uint32_t blockSize
* @param uint32_t guard_bits
* @return none
* The function Provides the guard bits for the buffer
* to avoid overflow
*/
void arm_provide_guard_bits_q15 (q15_t * input_buf, uint32_t blockSize,
uint32_t guard_bits)
{
uint32_t i;
for (i = 0; i < blockSize; i++)
{
input_buf[i] = input_buf[i] >> guard_bits;
}
}
/**
* @brief Converts float to fixed in q12.20 format
* @param uint32_t number of samples in the buffer
* @return none
* The function converts floating point values to fixed point(q12.20) values
*/
void arm_float_to_q12_20(float *pIn, q31_t * pOut, uint32_t numSamples)
{
uint32_t i;
for (i = 0; i < numSamples; i++)
{
/* 1048576.0f corresponds to pow(2, 20) */
pOut[i] = (q31_t) (pIn[i] * 1048576.0f);
pOut[i] += pIn[i] > 0 ? 0.5 : -0.5;
if (pIn[i] == (float) 1.0)
{
pOut[i] = 0x000FFFFF;
}
}
}
/**
* @brief Compare MATLAB Reference Output and ARM Test output
* @param q15_t* Pointer to Ref buffer
* @param q15_t* Pointer to Test buffer
* @param uint32_t number of samples in the buffer
* @return none
*/
uint32_t arm_compare_fixed_q15(q15_t *pIn, q15_t * pOut, uint32_t numSamples)
{
uint32_t i;
int32_t diff, diffCrnt = 0;
uint32_t maxDiff = 0;
for (i = 0; i < numSamples; i++)
{
diff = pIn[i] - pOut[i];
diffCrnt = (diff > 0) ? diff : -diff;
if(diffCrnt > maxDiff)
{
maxDiff = diffCrnt;
}
}
return(maxDiff);
}
/**
* @brief Compare MATLAB Reference Output and ARM Test output
* @param q31_t* Pointer to Ref buffer
* @param q31_t* Pointer to Test buffer
* @param uint32_t number of samples in the buffer
* @return none
*/
uint32_t arm_compare_fixed_q31(q31_t *pIn, q31_t * pOut, uint32_t numSamples)
{
uint32_t i;
int32_t diff, diffCrnt = 0;
uint32_t maxDiff = 0;
for (i = 0; i < numSamples; i++)
{
diff = pIn[i] - pOut[i];
diffCrnt = (diff > 0) ? diff : -diff;
if(diffCrnt > maxDiff)
{
maxDiff = diffCrnt;
}
}
return(maxDiff);
}
/**
* @brief Provide guard bits for Input buffer
* @param q31_t* Pointer to input buffer
* @param uint32_t blockSize
* @param uint32_t guard_bits
* @return none
* The function Provides the guard bits for the buffer
* to avoid overflow
*/
void arm_provide_guard_bits_q31 (q31_t * input_buf,
uint32_t blockSize,
uint32_t guard_bits)
{
uint32_t i;
for (i = 0; i < blockSize; i++)
{
input_buf[i] = input_buf[i] >> guard_bits;
}
}
/**
* @brief Provide guard bits for Input buffer
* @param q31_t* Pointer to input buffer
* @param uint32_t blockSize
* @param uint32_t guard_bits
* @return none
* The function Provides the guard bits for the buffer
* to avoid overflow
*/
void arm_provide_guard_bits_q7 (q7_t * input_buf,
uint32_t blockSize,
uint32_t guard_bits)
{
uint32_t i;
for (i = 0; i < blockSize; i++)
{
input_buf[i] = input_buf[i] >> guard_bits;
}
}
/**
* @brief Caluclates number of guard bits
* @param uint32_t number of additions
* @return none
* The function Caluclates the number of guard bits
* depending on the numtaps
*/
uint32_t arm_calc_guard_bits (uint32_t num_adds)
{
uint32_t i = 1, j = 0;
if (num_adds == 1)
{
return (0);
}
while (i < num_adds)
{
i = i * 2;
j++;
}
return (j);
}
/**
* @brief Converts Q15 to floating-point
* @param uint32_t number of samples in the buffer
* @return none
*/
void arm_apply_guard_bits (float32_t * pIn,
uint32_t numSamples,
uint32_t guard_bits)
{
uint32_t i;
for (i = 0; i < numSamples; i++)
{
pIn[i] = pIn[i] * arm_calc_2pow(guard_bits);
}
}
/**
* @brief Calculates pow(2, numShifts)
* @param uint32_t number of shifts
* @return pow(2, numShifts)
*/
uint32_t arm_calc_2pow(uint32_t numShifts)
{
uint32_t i, val = 1;
for (i = 0; i < numShifts; i++)
{
val = val * 2;
}
return(val);
}
/**
* @brief Converts float to fixed q14
* @param uint32_t number of samples in the buffer
* @return none
* The function converts floating point values to fixed point values
*/
void arm_float_to_q14 (float *pIn, q15_t * pOut,
uint32_t numSamples)
{
uint32_t i;
for (i = 0; i < numSamples; i++)
{
/* 16384.0f corresponds to pow(2, 14) */
pOut[i] = (q15_t) (pIn[i] * 16384.0f);
pOut[i] += pIn[i] > 0 ? 0.5 : -0.5;
if (pIn[i] == (float) 2.0)
{
pOut[i] = 0x7FFF;
}
}
}
/**
* @brief Converts float to fixed q30 format
* @param uint32_t number of samples in the buffer
* @return none
* The function converts floating point values to fixed point values
*/
void arm_float_to_q30 (float *pIn, q31_t * pOut,
uint32_t numSamples)
{
uint32_t i;
for (i = 0; i < numSamples; i++)
{
/* 1073741824.0f corresponds to pow(2, 30) */
pOut[i] = (q31_t) (pIn[i] * 1073741824.0f);
pOut[i] += pIn[i] > 0 ? 0.5 : -0.5;
if (pIn[i] == (float) 2.0)
{
pOut[i] = 0x7FFFFFFF;
}
}
}
/**
* @brief Converts float to fixed q30 format
* @param uint32_t number of samples in the buffer
* @return none
* The function converts floating point values to fixed point values
*/
void arm_float_to_q29 (float *pIn, q31_t * pOut,
uint32_t numSamples)
{
uint32_t i;
for (i = 0; i < numSamples; i++)
{
/* 1073741824.0f corresponds to pow(2, 30) */
pOut[i] = (q31_t) (pIn[i] * 536870912.0f);
pOut[i] += pIn[i] > 0 ? 0.5 : -0.5;
if (pIn[i] == (float) 4.0)
{
pOut[i] = 0x7FFFFFFF;
}
}
}
/**
* @brief Converts float to fixed q28 format
* @param uint32_t number of samples in the buffer
* @return none
* The function converts floating point values to fixed point values
*/
void arm_float_to_q28 (float *pIn, q31_t * pOut,
uint32_t numSamples)
{
uint32_t i;
for (i = 0; i < numSamples; i++)
{
/* 268435456.0f corresponds to pow(2, 28) */
pOut[i] = (q31_t) (pIn[i] * 268435456.0f);
pOut[i] += pIn[i] > 0 ? 0.5 : -0.5;
if (pIn[i] == (float) 8.0)
{
pOut[i] = 0x7FFFFFFF;
}
}
}
/**
* @brief Clip the float values to +/- 1
* @param pIn input buffer
* @param numSamples number of samples in the buffer
* @return none
* The function converts floating point values to fixed point values
*/
void arm_clip_f32 (float *pIn, uint32_t numSamples)
{
uint32_t i;
for (i = 0; i < numSamples; i++)
{
if(pIn[i] > 1.0f)
{
pIn[i] = 1.0;
}
else if( pIn[i] < -1.0f)
{
pIn[i] = -1.0;
}
}
}

@ -0,0 +1,63 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.0
*
* Project: CMSIS DSP Library
*
* Title: math_helper.h
*
* Description: Prototypes of all helper functions required.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
#ifndef MATH_HELPER_H
#define MATH_HELPER_H
float arm_snr_f32(float *pRef, float *pTest, uint32_t buffSize);
void arm_float_to_q12_20(float *pIn, q31_t * pOut, uint32_t numSamples);
void arm_provide_guard_bits_q15(q15_t *input_buf, uint32_t blockSize, uint32_t guard_bits);
void arm_provide_guard_bits_q31(q31_t *input_buf, uint32_t blockSize, uint32_t guard_bits);
void arm_float_to_q14(float *pIn, q15_t *pOut, uint32_t numSamples);
void arm_float_to_q29(float *pIn, q31_t *pOut, uint32_t numSamples);
void arm_float_to_q28(float *pIn, q31_t *pOut, uint32_t numSamples);
void arm_float_to_q30(float *pIn, q31_t *pOut, uint32_t numSamples);
void arm_clip_f32(float *pIn, uint32_t numSamples);
uint32_t arm_calc_guard_bits(uint32_t num_adds);
void arm_apply_guard_bits (float32_t * pIn, uint32_t numSamples, uint32_t guard_bits);
uint32_t arm_compare_fixed_q15(q15_t *pIn, q15_t * pOut, uint32_t numSamples);
uint32_t arm_compare_fixed_q31(q31_t *pIn, q31_t *pOut, uint32_t numSamples);
uint32_t arm_calc_2pow(uint32_t guard_bits);
#endif

@ -0,0 +1,247 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.0
*
* Project: CMSIS DSP Library
* Title: arm_convolution_example_f32.c
*
* Description: Example code demonstrating Convolution of two input signals using fft.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVIS