[2.0.x] Serial handshaking fixes / debugpull/10922/head
@@ -56,16 +56,15 @@ | |||
ring_buffer_r rx_buffer = { { 0 }, 0, 0 }; | |||
#if TX_BUFFER_SIZE > 0 | |||
ring_buffer_t tx_buffer = { { 0 }, 0, 0 }; | |||
static bool _written; | |||
#endif | |||
static bool _written; | |||
#endif | |||
#if ENABLED(SERIAL_XON_XOFF) | |||
constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80; // XON / XOFF Character was sent | |||
constexpr uint8_t XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send | |||
constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent | |||
XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send | |||
// XON / XOFF character definitions | |||
constexpr uint8_t XON_CHAR = 17; | |||
constexpr uint8_t XOFF_CHAR = 19; | |||
constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19; | |||
uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR; | |||
#endif | |||
@@ -73,6 +72,14 @@ | |||
uint8_t rx_dropped_bytes = 0; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS) | |||
uint8_t rx_buffer_overruns = 0; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS) | |||
uint8_t rx_framing_errors = 0; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) | |||
ring_buffer_pos_t rx_max_enqueued = 0; | |||
#endif | |||
@@ -91,125 +98,209 @@ | |||
static EmergencyParser::State emergency_state; // = EP_RESET | |||
#endif | |||
const ring_buffer_pos_t h = rx_buffer.head, | |||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// Get the tail - Nothing can alter its value while we are at this ISR | |||
const ring_buffer_pos_t t = rx_buffer.tail; | |||
// Get the head pointer | |||
ring_buffer_pos_t h = rx_buffer.head; | |||
// Get the next element | |||
ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// Read the character | |||
const uint8_t c = M_UDRx; | |||
// This must read the M_UCSRxA register before reading the received byte to detect error causes | |||
#if ENABLED(SERIAL_STATS_DROPPED_RX) | |||
if (TEST(M_UCSRxA, M_DORx) && !++rx_dropped_bytes) --rx_dropped_bytes; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS) | |||
if (TEST(M_UCSRxA, M_DORx) && !++rx_buffer_overruns) --rx_buffer_overruns; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS) | |||
if (TEST(M_UCSRxA, M_FEx) && !++rx_framing_errors) --rx_framing_errors; | |||
#endif | |||
// Read the character from the USART | |||
uint8_t c = M_UDRx; | |||
#if ENABLED(EMERGENCY_PARSER) | |||
emergency_parser.update(emergency_state, c); | |||
#endif | |||
// If the character is to be stored at the index just before the tail | |||
// (such that the head would advance to the current tail), the buffer is | |||
// critical, so don't write the character or advance the head. | |||
if (i != rx_buffer.tail) { | |||
// (such that the head would advance to the current tail), the RX FIFO is | |||
// full, so don't write the character or advance the head. | |||
if (i != t) { | |||
rx_buffer.buffer[h] = c; | |||
rx_buffer.head = i; | |||
} | |||
else { | |||
#if ENABLED(SERIAL_STATS_DROPPED_RX) | |||
if (!++rx_dropped_bytes) ++rx_dropped_bytes; | |||
#endif | |||
h = i; | |||
} | |||
#if ENABLED(SERIAL_STATS_DROPPED_RX) | |||
else if (!++rx_dropped_bytes) --rx_dropped_bytes; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) | |||
// calculate count of bytes stored into the RX buffer | |||
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// Calculate count of bytes stored into the RX buffer | |||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// Keep track of the maximum count of enqueued bytes | |||
NOLESS(rx_max_enqueued, rx_count); | |||
#endif | |||
#if ENABLED(SERIAL_XON_XOFF) | |||
// for high speed transfers, we can use XON/XOFF protocol to do | |||
// software handshake and avoid overruns. | |||
// If the last char that was sent was an XON | |||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) { | |||
// calculate count of bytes stored into the RX buffer | |||
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// Bytes stored into the RX buffer | |||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// if we are above 12.5% of RX buffer capacity, send XOFF before | |||
// we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to | |||
// let the host react and stop sending bytes. This translates to 13mS | |||
// propagation time. | |||
// If over 12.5% of RX buffer capacity, send XOFF before running out of | |||
// RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react | |||
// and stop sending bytes. This translates to 13mS propagation time. | |||
if (rx_count >= (RX_BUFFER_SIZE) / 8) { | |||
// If TX interrupts are disabled and data register is empty, | |||
// just write the byte to the data register and be done. This | |||
// shortcut helps significantly improve the effective datarate | |||
// at high (>500kbit/s) bitrates, where interrupt overhead | |||
// becomes a slowdown. | |||
if (!TEST(M_UCSRxB, M_UDRIEx) && TEST(M_UCSRxA, M_UDREx)) { | |||
// Send an XOFF character | |||
M_UDRx = XOFF_CHAR; | |||
// clear the TXC bit -- "can be cleared by writing a one to its bit | |||
// location". This makes sure flush() won't return until the bytes | |||
// actually got written | |||
SBI(M_UCSRxA, M_TXCx); | |||
// And remember it was sent | |||
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; | |||
// At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted. | |||
// Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens | |||
// to be in the middle of trying to disable the RX interrupt in the main program, eventually the | |||
// enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure | |||
// the sending of the XOFF char is to send it HERE AND NOW. | |||
// About to send the XOFF char | |||
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; | |||
// Wait until the TX register becomes empty and send it - Here there could be a problem | |||
// - While waiting for the TX register to empty, the RX register could receive a new | |||
// character. This must also handle that situation! | |||
while (!TEST(M_UCSRxA, M_UDREx)) { | |||
if (TEST(M_UCSRxA,M_RXCx)) { | |||
// A char arrived while waiting for the TX buffer to be empty - Receive and process it! | |||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// Read the character from the USART | |||
c = M_UDRx; | |||
#if ENABLED(EMERGENCY_PARSER) | |||
emergency_parser.update(emergency_state, c); | |||
#endif | |||
// If the character is to be stored at the index just before the tail | |||
// (such that the head would advance to the current tail), the FIFO is | |||
// full, so don't write the character or advance the head. | |||
if (i != t) { | |||
rx_buffer.buffer[h] = c; | |||
h = i; | |||
} | |||
#if ENABLED(SERIAL_STATS_DROPPED_RX) | |||
else if (!++rx_dropped_bytes) --rx_dropped_bytes; | |||
#endif | |||
} | |||
sw_barrier(); | |||
} | |||
else { | |||
// TX interrupts disabled, but buffer still not empty ... or | |||
// TX interrupts enabled. Reenable TX ints and schedule XOFF | |||
// character to be sent | |||
#if TX_BUFFER_SIZE > 0 | |||
SBI(M_UCSRxB, M_UDRIEx); | |||
xon_xoff_state = XOFF_CHAR; | |||
#else | |||
// We are not using TX interrupts, we will have to send this manually | |||
while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier(); | |||
M_UDRx = XOFF_CHAR; | |||
// clear the TXC bit -- "can be cleared by writing a one to its bit | |||
// location". This makes sure flush() won't return until the bytes | |||
// actually got written | |||
SBI(M_UCSRxA, M_TXCx); | |||
// And remember we already sent it | |||
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; | |||
#endif | |||
M_UDRx = XOFF_CHAR; | |||
// Clear the TXC bit -- "can be cleared by writing a one to its bit | |||
// location". This makes sure flush() won't return until the bytes | |||
// actually got written | |||
SBI(M_UCSRxA, M_TXCx); | |||
// At this point there could be a race condition between the write() function | |||
// and this sending of the XOFF char. This interrupt could happen between the | |||
// wait to be empty TX buffer loop and the actual write of the character. Since | |||
// the TX buffer is full because it's sending the XOFF char, the only way to be | |||
// sure the write() function will succeed is to wait for the XOFF char to be | |||
// completely sent. Since an extra character could be received during the wait | |||
// it must also be handled! | |||
while (!TEST(M_UCSRxA, M_UDREx)) { | |||
if (TEST(M_UCSRxA,M_RXCx)) { | |||
// A char arrived while waiting for the TX buffer to be empty - Receive and process it! | |||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// Read the character from the USART | |||
c = M_UDRx; | |||
#if ENABLED(EMERGENCY_PARSER) | |||
emergency_parser.update(emergency_state, c); | |||
#endif | |||
// If the character is to be stored at the index just before the tail | |||
// (such that the head would advance to the current tail), the FIFO is | |||
// full, so don't write the character or advance the head. | |||
if (i != t) { | |||
rx_buffer.buffer[h] = c; | |||
h = i; | |||
} | |||
#if ENABLED(SERIAL_STATS_DROPPED_RX) | |||
else if (!++rx_dropped_bytes) --rx_dropped_bytes; | |||
#endif | |||
} | |||
sw_barrier(); | |||
} | |||
// At this point everything is ready. The write() function won't | |||
// have any issues writing to the UART TX register if it needs to! | |||
} | |||
} | |||
#endif // SERIAL_XON_XOFF | |||
#if ENABLED(EMERGENCY_PARSER) | |||
emergency_parser.update(emergency_state, c); | |||
#endif | |||
// Store the new head value | |||
rx_buffer.head = h; | |||
} | |||
#if TX_BUFFER_SIZE > 0 | |||
// (called with TX irqs disabled) | |||
FORCE_INLINE void _tx_udr_empty_irq(void) { | |||
// If interrupts are enabled, there must be more data in the output | |||
// buffer. | |||
// Read positions | |||
uint8_t t = tx_buffer.tail; | |||
const uint8_t h = tx_buffer.head; | |||
#if ENABLED(SERIAL_XON_XOFF) | |||
// Do a priority insertion of an XON/XOFF char, if needed. | |||
const uint8_t state = xon_xoff_state; | |||
if (!(state & XON_XOFF_CHAR_SENT)) { | |||
M_UDRx = state & XON_XOFF_CHAR_MASK; | |||
xon_xoff_state = state | XON_XOFF_CHAR_SENT; | |||
// If an XON char is pending to be sent, do it now | |||
if (xon_xoff_state == XON_CHAR) { | |||
// Send the character | |||
M_UDRx = XON_CHAR; | |||
// clear the TXC bit -- "can be cleared by writing a one to its bit | |||
// location". This makes sure flush() won't return until the bytes | |||
// actually got written | |||
SBI(M_UCSRxA, M_TXCx); | |||
// Remember we sent it. | |||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; | |||
// If nothing else to transmit, just disable TX interrupts. | |||
if (h == t) CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) | |||
return; | |||
} | |||
else | |||
#endif | |||
{ // Send the next byte | |||
const uint8_t t = tx_buffer.tail, c = tx_buffer.buffer[t]; | |||
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1); | |||
M_UDRx = c; | |||
// If nothing to transmit, just disable TX interrupts. This could | |||
// happen as the result of the non atomicity of the disabling of RX | |||
// interrupts that could end reenabling TX interrupts as a side effect. | |||
if (h == t) { | |||
CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) | |||
return; | |||
} | |||
// clear the TXC bit -- "can be cleared by writing a one to its bit | |||
// location". This makes sure flush() won't return until the bytes | |||
// actually got written | |||
// There is something to TX, Send the next byte | |||
const uint8_t c = tx_buffer.buffer[t]; | |||
t = (t + 1) & (TX_BUFFER_SIZE - 1); | |||
M_UDRx = c; | |||
tx_buffer.tail = t; | |||
// Clear the TXC bit (by writing a one to its bit location). | |||
// Ensures flush() won't return until the bytes are actually written/ | |||
SBI(M_UCSRxA, M_TXCx); | |||
// Disable interrupts if the buffer is empty | |||
if (tx_buffer.head == tx_buffer.tail) | |||
CBI(M_UCSRxB, M_UDRIEx); | |||
// Disable interrupts if there is nothing to transmit following this byte | |||
if (h == t) CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) | |||
} | |||
#ifdef M_USARTx_UDRE_vect | |||
@@ -253,8 +344,8 @@ | |||
SBI(M_UCSRxB, M_RXCIEx); | |||
#if TX_BUFFER_SIZE > 0 | |||
CBI(M_UCSRxB, M_UDRIEx); | |||
_written = false; | |||
#endif | |||
_written = false; | |||
} | |||
void MarlinSerial::end() { | |||
@@ -281,11 +372,11 @@ | |||
} | |||
int MarlinSerial::read(void) { | |||
int v; | |||
#if RX_BUFFER_SIZE > 256 | |||
// Disable RX interrupts to ensure atomic reads | |||
const bool isr_enabled = TEST(M_UCSRxB, M_RXCIEx); | |||
// Disable RX interrupts to ensure atomic reads - This could reenable TX interrupts, | |||
// but this situation is explicitly handled at the TX isr, so no problems there | |||
bool isr_enabled = TEST(M_UCSRxB, M_RXCIEx); | |||
CBI(M_UCSRxB, M_RXCIEx); | |||
#endif | |||
@@ -298,43 +389,50 @@ | |||
ring_buffer_pos_t t = rx_buffer.tail; | |||
if (h == t) | |||
v = -1; | |||
else { | |||
v = rx_buffer.buffer[t]; | |||
t = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); | |||
#if RX_BUFFER_SIZE > 256 | |||
// Disable RX interrupts to ensure atomic write to tail, so | |||
// the RX isr can't read partially updated values | |||
const bool isr_enabled = TEST(M_UCSRxB, M_RXCIEx); | |||
CBI(M_UCSRxB, M_RXCIEx); | |||
#endif | |||
// If nothing to read, return now | |||
if (h == t) return -1; | |||
// Advance tail | |||
rx_buffer.tail = t; | |||
// Get the next char | |||
const int v = rx_buffer.buffer[t]; | |||
t = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); | |||
#if RX_BUFFER_SIZE > 256 | |||
// End critical section | |||
if (isr_enabled) SBI(M_UCSRxB, M_RXCIEx); | |||
#endif | |||
#if RX_BUFFER_SIZE > 256 | |||
// Disable RX interrupts to ensure atomic write to tail, so | |||
// the RX isr can't read partially updated values - This could | |||
// reenable TX interrupts, but this situation is explicitly | |||
// handled at the TX isr, so no problems there | |||
isr_enabled = TEST(M_UCSRxB, M_RXCIEx); | |||
CBI(M_UCSRxB, M_RXCIEx); | |||
#endif | |||
#if ENABLED(SERIAL_XON_XOFF) | |||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { | |||
// Advance tail | |||
rx_buffer.tail = t; | |||
// Get count of bytes in the RX buffer | |||
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
#if RX_BUFFER_SIZE > 256 | |||
// End critical section | |||
if (isr_enabled) SBI(M_UCSRxB, M_RXCIEx); | |||
#endif | |||
// When below 10% of RX buffer capacity, send XON before | |||
// running out of RX buffer bytes | |||
if (rx_count < (RX_BUFFER_SIZE) / 10) { | |||
#if ENABLED(SERIAL_XON_XOFF) | |||
// If the XOFF char was sent, or about to be sent... | |||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { | |||
// Get count of bytes in the RX buffer | |||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
if (rx_count < (RX_BUFFER_SIZE) / 10) { | |||
#if TX_BUFFER_SIZE > 0 | |||
// Signal we want an XON character to be sent. | |||
xon_xoff_state = XON_CHAR; | |||
// Enable TX isr. Non atomic, but it will eventually enable them | |||
SBI(M_UCSRxB, M_UDRIEx); | |||
#else | |||
// If not using TX interrupts, we must send the XON char now | |||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; | |||
write(XON_CHAR); | |||
return v; | |||
} | |||
while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier(); | |||
M_UDRx = XON_CHAR; | |||
#endif | |||
} | |||
#endif | |||
} | |||
} | |||
#endif | |||
return v; | |||
} | |||
@@ -367,9 +465,19 @@ | |||
#endif | |||
#if ENABLED(SERIAL_XON_XOFF) | |||
// If the XOFF char was sent, or about to be sent... | |||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { | |||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; | |||
write(XON_CHAR); | |||
#if TX_BUFFER_SIZE > 0 | |||
// Signal we want an XON character to be sent. | |||
xon_xoff_state = XON_CHAR; | |||
// Enable TX isr. Non atomic, but it will eventually enable it. | |||
SBI(M_UCSRxB, M_UDRIEx); | |||
#else | |||
// If not using TX interrupts, we must send the XON char now | |||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; | |||
while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier(); | |||
M_UDRx = XON_CHAR; | |||
#endif | |||
} | |||
#endif | |||
} | |||
@@ -383,6 +491,8 @@ | |||
// be done. This shortcut helps significantly improve the | |||
// effective datarate at high (>500kbit/s) bitrates, where | |||
// interrupt overhead becomes a slowdown. | |||
// Yes, there is a race condition between the sending of the | |||
// XOFF char at the RX isr, but it is properly handled there | |||
if (!TEST(M_UCSRxB, M_UDRIEx) && TEST(M_UCSRxA, M_UDREx)) { | |||
M_UDRx = c; | |||
@@ -395,61 +505,79 @@ | |||
const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1); | |||
// If the output buffer is full, there's nothing for it other than to | |||
// wait for the interrupt handler to empty it a bit | |||
while (i == tx_buffer.tail) { | |||
if (!ISRS_ENABLED()) { | |||
// Interrupts are disabled, so we'll have to poll the data | |||
// register empty flag ourselves. If it is set, pretend an | |||
// interrupt has happened and call the handler to free up | |||
// space for us. | |||
if (TEST(M_UCSRxA, M_UDREx)) | |||
_tx_udr_empty_irq(); | |||
} | |||
// (else , the interrupt handler will free up space for us) | |||
// If global interrupts are disabled (as the result of being called from an ISR)... | |||
if (!ISRS_ENABLED()) { | |||
// Make room by polling if it is possible to transmit, and do so! | |||
while (i == tx_buffer.tail) { | |||
// If we can transmit another byte, do it. | |||
if (TEST(M_UCSRxA, M_UDREx)) _tx_udr_empty_irq(); | |||
// Make sure compiler rereads tx_buffer.tail | |||
sw_barrier(); | |||
// Make sure compiler rereads tx_buffer.tail | |||
sw_barrier(); | |||
} | |||
} | |||
else { | |||
// Interrupts are enabled, just wait until there is space | |||
while (i == tx_buffer.tail) { sw_barrier(); } | |||
} | |||
// Store new char. head is always safe to move | |||
tx_buffer.buffer[tx_buffer.head] = c; | |||
tx_buffer.head = i; | |||
// Enable TX isr | |||
// Enable TX isr - Non atomic, but it will eventually enable TX isr | |||
SBI(M_UCSRxB, M_UDRIEx); | |||
return; | |||
} | |||
void MarlinSerial::flushTX(void) { | |||
// TX | |||
// If we have never written a byte, no need to flush. This special | |||
// case is needed since there is no way to force the TXC (transmit | |||
// complete) bit to 1 during initialization | |||
if (!_written) | |||
return; | |||
// No bytes written, no need to flush. This special case is needed since there's | |||
// no way to force the TXC (transmit complete) bit to 1 during initialization. | |||
if (!_written) return; | |||
// If global interrupts are disabled (as the result of being called from an ISR)... | |||
if (!ISRS_ENABLED()) { | |||
// Wait until everything was transmitted - We must do polling, as interrupts are disabled | |||
while (tx_buffer.head != tx_buffer.tail || !TEST(M_UCSRxA, M_TXCx)) { | |||
while (TEST(M_UCSRxB, M_UDRIEx) || !TEST(M_UCSRxA, M_TXCx)) { | |||
if (!ISRS_ENABLED()) { | |||
// Interrupts are globally disabled, but the DR empty | |||
// interrupt should be enabled, so poll the DR empty flag to | |||
// prevent deadlock | |||
// If there is more space, send an extra character | |||
if (TEST(M_UCSRxA, M_UDREx)) | |||
_tx_udr_empty_irq(); | |||
sw_barrier(); | |||
} | |||
sw_barrier(); | |||
} | |||
// If we get here, nothing is queued anymore (DRIE is disabled) and | |||
else { | |||
// Wait until everything was transmitted | |||
while (tx_buffer.head != tx_buffer.tail || !TEST(M_UCSRxA, M_TXCx)) sw_barrier(); | |||
} | |||
// At this point nothing is queued anymore (DRIE is disabled) and | |||
// the hardware finished transmission (TXC is set). | |||
} | |||
#else // TX_BUFFER_SIZE == 0 | |||
void MarlinSerial::write(const uint8_t c) { | |||
_written = true; | |||
while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier(); | |||
M_UDRx = c; | |||
} | |||
void MarlinSerial::flushTX(void) { | |||
// No bytes written, no need to flush. This special case is needed since there's | |||
// no way to force the TXC (transmit complete) bit to 1 during initialization. | |||
if (!_written) return; | |||
// Wait until everything was transmitted | |||
while (!TEST(M_UCSRxA, M_TXCx)) sw_barrier(); | |||
// At this point nothing is queued anymore (DRIE is disabled) and | |||
// the hardware finished transmission (TXC is set). | |||
} | |||
#endif // TX_BUFFER_SIZE == 0 | |||
/** | |||
@@ -473,13 +601,9 @@ | |||
} | |||
void MarlinSerial::print(long n, int base) { | |||
if (base == 0) | |||
write(n); | |||
if (base == 0) write(n); | |||
else if (base == 10) { | |||
if (n < 0) { | |||
print('-'); | |||
n = -n; | |||
} | |||
if (n < 0) { print('-'); n = -n; } | |||
printNumber(n, 10); | |||
} | |||
else | |||
@@ -62,6 +62,9 @@ | |||
#define M_TXCx SERIAL_REGNAME(TXC,SERIAL_PORT,) | |||
#define M_RXCIEx SERIAL_REGNAME(RXCIE,SERIAL_PORT,) | |||
#define M_UDREx SERIAL_REGNAME(UDRE,SERIAL_PORT,) | |||
#define M_FEx SERIAL_REGNAME(FE,SERIAL_PORT,) | |||
#define M_DORx SERIAL_REGNAME(DOR,SERIAL_PORT,) | |||
#define M_UPEx SERIAL_REGNAME(UPE,SERIAL_PORT,) | |||
#define M_UDRIEx SERIAL_REGNAME(UDRIE,SERIAL_PORT,) | |||
#define M_UDRx SERIAL_REGNAME(UDR,SERIAL_PORT,) | |||
#define M_UBRRxH SERIAL_REGNAME(UBRR,SERIAL_PORT,H) | |||
@@ -75,6 +78,7 @@ | |||
#define HEX 16 | |||
#define OCT 8 | |||
#define BIN 2 | |||
#define BYTE 0 | |||
#ifndef USBCON | |||
// We're using a ring buffer (I think), in which rx_buffer_head is the index of the | |||
@@ -90,6 +94,14 @@ | |||
extern uint8_t rx_dropped_bytes; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS) | |||
extern uint8_t rx_buffer_overruns; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS) | |||
extern uint8_t rx_framing_errors; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) | |||
extern ring_buffer_pos_t rx_max_enqueued; | |||
#endif | |||
@@ -105,14 +117,20 @@ | |||
static void flush(void); | |||
static ring_buffer_pos_t available(void); | |||
static void write(const uint8_t c); | |||
#if TX_BUFFER_SIZE > 0 | |||
static void flushTX(void); | |||
#endif | |||
static void flushTX(void); | |||
#if ENABLED(SERIAL_STATS_DROPPED_RX) | |||
FORCE_INLINE static uint32_t dropped() { return rx_dropped_bytes; } | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS) | |||
FORCE_INLINE static uint32_t buffer_overruns() { return rx_buffer_overruns; } | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS) | |||
FORCE_INLINE static uint32_t framing_errors() { return rx_framing_errors; } | |||
#endif | |||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) | |||
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return rx_max_enqueued; } | |||
#endif | |||
@@ -122,8 +140,8 @@ | |||
FORCE_INLINE static void print(const String& s) { for (int i = 0; i < (int)s.length(); i++) write(s[i]); } | |||
FORCE_INLINE static void print(const char* str) { write(str); } | |||
static void print(char, int = 0); | |||
static void print(unsigned char, int = 0); | |||
static void print(char, int = BYTE); | |||
static void print(unsigned char, int = BYTE); | |||
static void print(int, int = DEC); | |||
static void print(unsigned int, int = DEC); | |||
static void print(long, int = DEC); | |||
@@ -132,8 +150,8 @@ | |||
static void println(const String& s); | |||
static void println(const char[]); | |||
static void println(char, int = 0); | |||
static void println(unsigned char, int = 0); | |||
static void println(char, int = BYTE); | |||
static void println(unsigned char, int = BYTE); | |||
static void println(int, int = DEC); | |||
static void println(unsigned int, int = DEC); | |||
static void println(long, int = DEC); | |||
@@ -74,15 +74,14 @@ | |||
ring_buffer_r rx_buffer = { { 0 }, 0, 0 }; | |||
#if TX_BUFFER_SIZE > 0 | |||
ring_buffer_t tx_buffer = { { 0 }, 0, 0 }; | |||
static bool _written; | |||
#endif | |||
static bool _written; | |||
#if ENABLED(SERIAL_XON_XOFF) | |||
constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80; // XON / XOFF Character was sent | |||
constexpr uint8_t XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send | |||
constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent | |||
XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send | |||
// XON / XOFF character definitions | |||
constexpr uint8_t XON_CHAR = 17; | |||
constexpr uint8_t XOFF_CHAR = 19; | |||
constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19; | |||
uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR; | |||
// Validate that RX buffer size is at least 4096 bytes- According to several experiments, on | |||
@@ -99,6 +98,14 @@ | |||
uint8_t rx_dropped_bytes = 0; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS) | |||
uint8_t rx_buffer_overruns = 0; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS) | |||
uint8_t rx_framing_errors = 0; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) | |||
ring_buffer_pos_t rx_max_enqueued = 0; | |||
#endif | |||
@@ -110,132 +117,218 @@ | |||
#include "../../feature/emergency_parser.h" | |||
#endif | |||
// (called with RX interrupts disabled) | |||
FORCE_INLINE void store_rxd_char() { | |||
#if ENABLED(EMERGENCY_PARSER) | |||
static EmergencyParser::State emergency_state; // = EP_RESET | |||
#endif | |||
const ring_buffer_pos_t h = rx_buffer.head, | |||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// Get the tail - Nothing can alter its value while we are at this ISR | |||
const ring_buffer_pos_t t = rx_buffer.tail; | |||
// Get the head pointer | |||
ring_buffer_pos_t h = rx_buffer.head; | |||
// Read the character | |||
const uint8_t c = HWUART->UART_RHR; | |||
// Get the next element | |||
ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// Read the character from the USART | |||
uint8_t c = HWUART->UART_RHR; | |||
#if ENABLED(EMERGENCY_PARSER) | |||
emergency_parser.update(emergency_state, c); | |||
#endif | |||
// If the character is to be stored at the index just before the tail | |||
// (such that the head would advance to the current tail), the buffer is | |||
// critical, so don't write the character or advance the head. | |||
if (i != rx_buffer.tail) { | |||
// (such that the head would advance to the current tail), the RX FIFO is | |||
// full, so don't write the character or advance the head. | |||
if (i != t) { | |||
rx_buffer.buffer[h] = c; | |||
rx_buffer.head = i; | |||
h = i; | |||
} | |||
#if ENABLED(SERIAL_STATS_DROPPED_RX) | |||
else if (!++rx_dropped_bytes) ++rx_dropped_bytes; | |||
else if (!++rx_dropped_bytes) --rx_dropped_bytes; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) | |||
// calculate count of bytes stored into the RX buffer | |||
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// Calculate count of bytes stored into the RX buffer | |||
// Keep track of the maximum count of enqueued bytes | |||
NOLESS(rx_max_enqueued, rx_count); | |||
#endif | |||
#if ENABLED(SERIAL_XON_XOFF) | |||
// for high speed transfers, we can use XON/XOFF protocol to do | |||
// software handshake and avoid overruns. | |||
// If the last char that was sent was an XON | |||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) { | |||
// calculate count of bytes stored into the RX buffer | |||
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// Bytes stored into the RX buffer | |||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// if we are above 12.5% of RX buffer capacity, send XOFF before | |||
// we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to | |||
// let the host react and stop sending bytes. This translates to 13mS | |||
// propagation time. | |||
// If over 12.5% of RX buffer capacity, send XOFF before running out of | |||
// RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react | |||
// and stop sending bytes. This translates to 13mS propagation time. | |||
if (rx_count >= (RX_BUFFER_SIZE) / 8) { | |||
// If TX interrupts are disabled and data register is empty, | |||
// just write the byte to the data register and be done. This | |||
// shortcut helps significantly improve the effective datarate | |||
// at high (>500kbit/s) bitrates, where interrupt overhead | |||
// becomes a slowdown. | |||
if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) { | |||
// Send an XOFF character | |||
HWUART->UART_THR = XOFF_CHAR; | |||
// And remember it was sent | |||
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; | |||
// At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted. | |||
// Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens | |||
// to be in the middle of trying to disable the RX interrupt in the main program, eventually the | |||
// enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure | |||
// the sending of the XOFF char is to send it HERE AND NOW. | |||
// About to send the XOFF char | |||
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; | |||
// Wait until the TX register becomes empty and send it - Here there could be a problem | |||
// - While waiting for the TX register to empty, the RX register could receive a new | |||
// character. This must also handle that situation! | |||
uint32_t status; | |||
while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) { | |||
if (status & UART_SR_RXRDY) { | |||
// We received a char while waiting for the TX buffer to be empty - Receive and process it! | |||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// Read the character from the USART | |||
c = HWUART->UART_RHR; | |||
#if ENABLED(EMERGENCY_PARSER) | |||
emergency_parser.update(emergency_state, c); | |||
#endif | |||
// If the character is to be stored at the index just before the tail | |||
// (such that the head would advance to the current tail), the FIFO is | |||
// full, so don't write the character or advance the head. | |||
if (i != t) { | |||
rx_buffer.buffer[h] = c; | |||
h = i; | |||
} | |||
#if ENABLED(SERIAL_STATS_DROPPED_RX) | |||
else if (!++rx_dropped_bytes) --rx_dropped_bytes; | |||
#endif | |||
} | |||
sw_barrier(); | |||
} | |||
else { | |||
// TX interrupts disabled, but buffer still not empty ... or | |||
// TX interrupts enabled. Reenable TX ints and schedule XOFF | |||
// character to be sent | |||
#if TX_BUFFER_SIZE > 0 | |||
HWUART->UART_IER = UART_IER_TXRDY; | |||
xon_xoff_state = XOFF_CHAR; | |||
#else | |||
// We are not using TX interrupts, we will have to send this manually | |||
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); | |||
HWUART->UART_THR = XOFF_CHAR; | |||
// And remember we already sent it | |||
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; | |||
#endif | |||
HWUART->UART_THR = XOFF_CHAR; | |||
// At this point there could be a race condition between the write() function | |||
// and this sending of the XOFF char. This interrupt could happen between the | |||
// wait to be empty TX buffer loop and the actual write of the character. Since | |||
// the TX buffer is full because it's sending the XOFF char, the only way to be | |||
// sure the write() function will succeed is to wait for the XOFF char to be | |||
// completely sent. Since an extra character could be received during the wait | |||
// it must also be handled! | |||
while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) { | |||
if (status & UART_SR_RXRDY) { | |||
// A char arrived while waiting for the TX buffer to be empty - Receive and process it! | |||
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// Read the character from the USART | |||
c = HWUART->UART_RHR; | |||
#if ENABLED(EMERGENCY_PARSER) | |||
emergency_parser.update(emergency_state, c); | |||
#endif | |||
// If the character is to be stored at the index just before the tail | |||
// (such that the head would advance to the current tail), the FIFO is | |||
// full, so don't write the character or advance the head. | |||
if (i != t) { | |||
rx_buffer.buffer[h] = c; | |||
h = i; | |||
} | |||
#if ENABLED(SERIAL_STATS_DROPPED_RX) | |||
else if (!++rx_dropped_bytes) --rx_dropped_bytes; | |||
#endif | |||
} | |||
sw_barrier(); | |||
} | |||
// At this point everything is ready. The write() function won't | |||
// have any issues writing to the UART TX register if it needs to! | |||
} | |||
} | |||
#endif // SERIAL_XON_XOFF | |||
#if ENABLED(EMERGENCY_PARSER) | |||
emergency_parser.update(emergency_state, c); | |||
#endif | |||
// Store the new head value | |||
rx_buffer.head = h; | |||
} | |||
#if TX_BUFFER_SIZE > 0 | |||
FORCE_INLINE void _tx_thr_empty_irq(void) { | |||
// If interrupts are enabled, there must be more data in the output | |||
// buffer. | |||
// Read positions | |||
uint8_t t = tx_buffer.tail; | |||
const uint8_t h = tx_buffer.head; | |||
#if ENABLED(SERIAL_XON_XOFF) | |||
// Do a priority insertion of an XON/XOFF char, if needed. | |||
const uint8_t state = xon_xoff_state; | |||
if (!(state & XON_XOFF_CHAR_SENT)) { | |||
HWUART->UART_THR = state & XON_XOFF_CHAR_MASK; | |||
xon_xoff_state = state | XON_XOFF_CHAR_SENT; | |||
// If an XON char is pending to be sent, do it now | |||
if (xon_xoff_state == XON_CHAR) { | |||
// Send the character | |||
HWUART->UART_THR = XON_CHAR; | |||
// Remember we sent it. | |||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; | |||
// If nothing else to transmit, just disable TX interrupts. | |||
if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY; | |||
return; | |||
} | |||
else | |||
#endif | |||
{ // Send the next byte | |||
const uint8_t t = tx_buffer.tail, c = tx_buffer.buffer[t]; | |||
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1); | |||
HWUART->UART_THR = c; | |||
} | |||
// Disable interrupts if the buffer is empty | |||
if (tx_buffer.head == tx_buffer.tail) | |||
// If nothing to transmit, just disable TX interrupts. This could | |||
// happen as the result of the non atomicity of the disabling of RX | |||
// interrupts that could end reenabling TX interrupts as a side effect. | |||
if (h == t) { | |||
HWUART->UART_IDR = UART_IDR_TXRDY; | |||
return; | |||
} | |||
// There is something to TX, Send the next byte | |||
const uint8_t c = tx_buffer.buffer[t]; | |||
t = (t + 1) & (TX_BUFFER_SIZE - 1); | |||
HWUART->UART_THR = c; | |||
tx_buffer.tail = t; | |||
// Disable interrupts if there is nothing to transmit following this byte | |||
if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY; | |||
} | |||
#endif // TX_BUFFER_SIZE > 0 | |||
static void UART_ISR(void) { | |||
uint32_t status = HWUART->UART_SR; | |||
const uint32_t status = HWUART->UART_SR; | |||
// Did we receive data? | |||
if (status & UART_SR_RXRDY) | |||
store_rxd_char(); | |||
// Data received? | |||
if (status & UART_SR_RXRDY) store_rxd_char(); | |||
#if TX_BUFFER_SIZE > 0 | |||
// Do we have something to send, and TX interrupts are enabled (meaning something to send) ? | |||
if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) | |||
_tx_thr_empty_irq(); | |||
// Something to send, and TX interrupts are enabled (meaning something to send)? | |||
if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) _tx_thr_empty_irq(); | |||
#endif | |||
// Acknowledge errors | |||
if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) { | |||
#if ENABLED(SERIAL_STATS_DROPPED_RX) | |||
if (status & UART_SR_OVRE && !++rx_dropped_bytes) --rx_dropped_bytes; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS) | |||
if (status & UART_SR_OVRE && !++rx_buffer_overruns) --rx_buffer_overruns; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS) | |||
if (status & UART_SR_FRAME && !++rx_framing_errors) --rx_framing_errors; | |||
#endif | |||
// TODO: error reporting outside ISR | |||
HWUART->UART_CR = UART_CR_RSTSTA; | |||
} | |||
@@ -312,36 +405,40 @@ | |||
} | |||
int MarlinSerial::read(void) { | |||
int v; | |||
const ring_buffer_pos_t h = rx_buffer.head; | |||
ring_buffer_pos_t t = rx_buffer.tail; | |||
if (h == t) | |||
v = -1; | |||
else { | |||
v = rx_buffer.buffer[t]; | |||
t = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); | |||
// Advance tail | |||
rx_buffer.tail = t; | |||
#if ENABLED(SERIAL_XON_XOFF) | |||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { | |||
// Get count of bytes in the RX buffer | |||
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// When below 10% of RX buffer capacity, send XON before | |||
// running out of RX buffer bytes | |||
if (rx_count < (RX_BUFFER_SIZE) / 10) { | |||
if (h == t) return -1; | |||
int v = rx_buffer.buffer[t]; | |||
t = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); | |||
// Advance tail | |||
rx_buffer.tail = t; | |||
#if ENABLED(SERIAL_XON_XOFF) | |||
// If the XOFF char was sent, or about to be sent... | |||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { | |||
// Get count of bytes in the RX buffer | |||
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); | |||
// When below 10% of RX buffer capacity, send XON before running out of RX buffer bytes | |||
if (rx_count < (RX_BUFFER_SIZE) / 10) { | |||
#if TX_BUFFER_SIZE > 0 | |||
// Signal we want an XON character to be sent. | |||
xon_xoff_state = XON_CHAR; | |||
// Enable TX isr. | |||
HWUART->UART_IER = UART_IER_TXRDY; | |||
#else | |||
// If not using TX interrupts, we must send the XON char now | |||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; | |||
write(XON_CHAR); | |||
return v; | |||
} | |||
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); | |||
HWUART->UART_THR = XON_CHAR; | |||
#endif | |||
} | |||
#endif | |||
} | |||
} | |||
#endif | |||
return v; | |||
} | |||
@@ -355,8 +452,17 @@ | |||
#if ENABLED(SERIAL_XON_XOFF) | |||
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { | |||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; | |||
write(XON_CHAR); | |||
#if TX_BUFFER_SIZE > 0 | |||
// Signal we want an XON character to be sent. | |||
xon_xoff_state = XON_CHAR; | |||
// Enable TX isr. | |||
HWUART->UART_IER = UART_IER_TXRDY; | |||
#else | |||
// If not using TX interrupts, we must send the XON char now | |||
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; | |||
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); | |||
HWUART->UART_THR = XON_CHAR; | |||
#endif | |||
} | |||
#endif | |||
} | |||
@@ -364,72 +470,99 @@ | |||
#if TX_BUFFER_SIZE > 0 | |||
void MarlinSerial::write(const uint8_t c) { | |||
_written = true; | |||
// If the TX interrupts are disabled and the data register | |||
// is empty, just write the byte to the data register and | |||
// be done. This shortcut helps significantly improve the | |||
// effective datarate at high (>500kbit/s) bitrates, where | |||
// If the TX interrupts are disabled and the data register | |||
// is empty, just write the byte to the data register and | |||
// be done. This shortcut helps significantly improve the | |||
// effective datarate at high (>500kbit/s) bitrates, where | |||
// interrupt overhead becomes a slowdown. | |||
// Yes, there is a race condition between the sending of the | |||
// XOFF char at the RX isr, but it is properly handled there | |||
if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) { | |||
HWUART->UART_THR = c; | |||
return; | |||
} | |||
const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1); | |||
// If the output buffer is full, there's nothing for it other than to | |||
// wait for the interrupt handler to empty it a bit | |||
while (i == tx_buffer.tail) { | |||
if (!ISRS_ENABLED()) { | |||
// Interrupts are disabled, so we'll have to poll the data | |||
// register empty flag ourselves. If it is set, pretend an | |||
// interrupt has happened and call the handler to free up | |||
// space for us. | |||
if (HWUART->UART_SR & UART_SR_TXRDY) | |||
_tx_thr_empty_irq(); | |||
// If global interrupts are disabled (as the result of being called from an ISR)... | |||
if (!ISRS_ENABLED()) { | |||
// Make room by polling if it is possible to transmit, and do so! | |||
while (i == tx_buffer.tail) { | |||
// If we can transmit another byte, do it. | |||
if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq(); | |||
// Make sure compiler rereads tx_buffer.tail | |||
sw_barrier(); | |||
} | |||
// (else , the interrupt handler will free up space for us) | |||
// Make sure compiler rereads tx_buffer.tail | |||
sw_barrier(); | |||
} | |||
else { | |||
// Interrupts are enabled, just wait until there is space | |||
while (i == tx_buffer.tail) sw_barrier(); | |||
} | |||
// Store new char. head is always safe to move | |||
tx_buffer.buffer[tx_buffer.head] = c; | |||
tx_buffer.head = i; | |||
// Enable TX isr | |||
// Enable TX isr - Non atomic, but it will eventually enable TX isr | |||
HWUART->UART_IER = UART_IER_TXRDY; | |||
return; | |||
} | |||
void MarlinSerial::flushTX(void) { | |||
// TX | |||
// If we have never written a byte, no need to flush. | |||
// If we have never written a byte, no need to flush. This special | |||
// case is needed since there is no way to force the TXC (transmit | |||
// complete) bit to 1 during initialization | |||
if (!_written) return; | |||
while ((HWUART->UART_IMR & UART_IMR_TXRDY) || !(HWUART->UART_SR & UART_SR_TXEMPTY)) { | |||
if (!ISRS_ENABLED()) { | |||
if (HWUART->UART_SR & UART_SR_TXRDY) | |||
_tx_thr_empty_irq(); | |||
// If global interrupts are disabled (as the result of being called from an ISR)... | |||
if (!ISRS_ENABLED()) { | |||
// Wait until everything was transmitted - We must do polling, as interrupts are disabled | |||
while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) { | |||
// If there is more space, send an extra character | |||
if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq(); | |||
sw_barrier(); | |||
} | |||
sw_barrier(); | |||
} | |||
else { | |||
// Wait until everything was transmitted | |||
while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier(); | |||
} | |||
// If we get here, nothing is queued anymore (TX interrupts are disabled) and | |||
// the hardware finished tranmission (TXEMPTY is set). | |||
// At this point nothing is queued anymore (DRIE is disabled) and | |||
// the hardware finished transmission (TXC is set). | |||
} | |||
#else // TX_BUFFER_SIZE == 0 | |||
void MarlinSerial::write(const uint8_t c) { | |||
_written = true; | |||
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); | |||
HWUART->UART_THR = c; | |||
} | |||
void MarlinSerial::flushTX(void) { | |||
// TX | |||
// No bytes written, no need to flush. This special case is needed since there's | |||
// no way to force the TXC (transmit complete) bit to 1 during initialization. | |||
if (!_written) return; | |||
// Wait until everything was transmitted | |||
while (!(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier(); | |||
// At this point nothing is queued anymore (DRIE is disabled) and | |||
// the hardware finished transmission (TXC is set). | |||
} | |||
#endif // TX_BUFFER_SIZE == 0 | |||
/** | |||
* Imports from print.h | |||
*/ | |||
* Imports from print.h | |||
*/ | |||
void MarlinSerial::print(char c, int base) { | |||
print((long)c, base); | |||
@@ -448,13 +581,9 @@ | |||
} | |||
void MarlinSerial::print(long n, int base) { | |||
if (base == 0) | |||
write(n); | |||
if (base == 0) write(n); | |||
else if (base == 10) { | |||
if (n < 0) { | |||
print('-'); | |||
n = -n; | |||
} | |||
if (n < 0) { print('-'); n = -n; } | |||
printNumber(n, 10); | |||
} | |||
else | |||
@@ -546,9 +675,7 @@ | |||
// Round correctly so that print(1.999, 2) prints as "2.00" | |||
double rounding = 0.5; | |||
for (uint8_t i = 0; i < digits; ++i) | |||
rounding *= 0.1; | |||
for (uint8_t i = 0; i < digits; ++i) rounding *= 0.1; | |||
number += rounding; | |||
// Extract the integer part of the number and print it | |||
@@ -70,6 +70,14 @@ | |||
extern uint8_t rx_dropped_bytes; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS) | |||
extern uint8_t rx_buffer_overruns; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS) | |||
extern uint8_t rx_framing_errors; | |||
#endif | |||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) | |||
extern ring_buffer_pos_t rx_max_enqueued; | |||
#endif | |||
@@ -85,14 +93,20 @@ public: | |||
static void flush(void); | |||
static ring_buffer_pos_t available(void); | |||
static void write(const uint8_t c); | |||
#if TX_BUFFER_SIZE > 0 | |||
static void flushTX(void); | |||
#endif | |||
static void flushTX(void); | |||
#if ENABLED(SERIAL_STATS_DROPPED_RX) | |||
FORCE_INLINE static uint32_t dropped() { return rx_dropped_bytes; } | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS) | |||
FORCE_INLINE static uint32_t buffer_overruns() { return rx_buffer_overruns; } | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS) | |||
FORCE_INLINE static uint32_t framing_errors() { return rx_framing_errors; } | |||
#endif | |||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) | |||
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return rx_max_enqueued; } | |||
#endif | |||
@@ -58,6 +58,23 @@ void GcodeSuite::M111() { | |||
} | |||
else { | |||
SERIAL_ECHOPGM(MSG_DEBUG_OFF); | |||
#if !defined(__AVR__) || !defined(USBCON) | |||
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS) | |||
SERIAL_ECHOLNPAIR("Buffer Overruns: ", customizedSerial.buffer_overruns()); | |||
#endif | |||
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS) | |||
SERIAL_ECHOLNPAIR("Framing Errors: ", customizedSerial.framing_errors()); | |||
#endif | |||
#if ENABLED(SERIAL_STATS_DROPPED_RX) | |||
SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped()); | |||
#endif | |||
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) | |||
SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued()); | |||
#endif | |||
#endif // !defined(__AVR__) || !defined(USBCON) | |||
} | |||
SERIAL_EOL(); | |||
} |